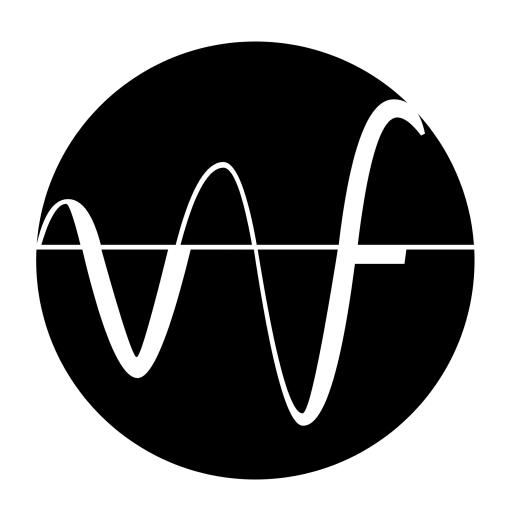


ANNIVERSARY SYMPOSIUM


Care of the Professional Voice

VIRTUAL EDITION June 2-6, 2021

The Effect of Sound Field Amplification Systems on Vocal Dose in Teachers

Baiba Trinite, Dina Barute
Voice and Speech Research Laboratory, Liepaja University,

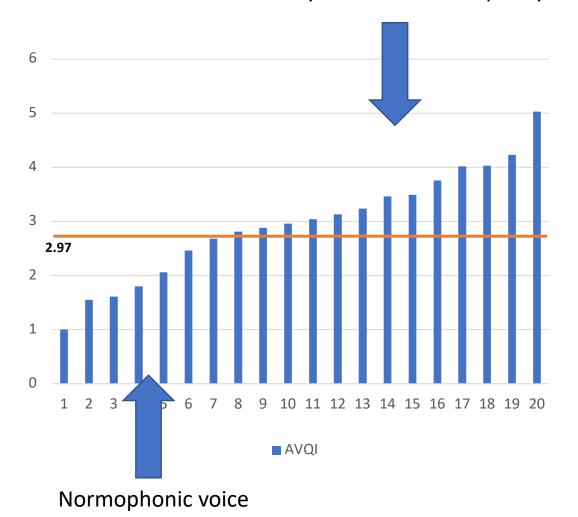
SPEAKER DISCLOSURE

Baiba Trinite, Dina Barute

We have no Relevant
Financial/NonFinancial
Relationships and no
actual or potential
conflict of interest in
relation to this
program

Introduction

- High vocal demand response is one of the most common etiological factors of teachers' voice disorders
- The use of voice amplification systems in classrooms is one way to decrease vocal demand response in teachers and improve their vocal health (Sala & Rantala, 2019)
- There are not many evidences confirming the impact of speech amplification systems on change of vocal parameters and following vocal demand response, especially in teachers with different acoustical voice quality (Assad et al., 2019; Gaskill et al., 2012; Morrow & Connor, 2011)


The aim of the study

To find out an impact of sound field amplification systems on vocal parameters in teachers during lessons

Study participants

- Female teachers (N = 20)
 - Age: M = 49.9 (6.7), 38-62
 - Years in teachers' profession:
 M = 23.9 (9.0), 8-38
 - Elementary and high school
 - No music and sport teachers
- AVQI (PRAAT)
 - M = 3.07 (0.96), 1.00-5.03
- Laryngoscopy
 - Initial vocal nodules (n = 7)

Acoustically abnormal voice quality

Methods

Voice dosimetry VHM (PR.O.Voice S.r.l.)

Lessons

No SFAS

1-2 days (M = 1.3)

Total dosimetry duration: 75 h 52 min

Average dosimetry/teacher: 228 (135) min.

SFAS
PentaClass Runa (Certes, Latvia)

1-3 days (M = 1.7)

Total dosimetry duration: 84 h 14 min

Average dosimetry/teacher: 253 (144) min.

(t(19) = -0.618, P = 0.272)

Methods

Obtained parameters

- Phonation time (D_{t%})
- Voice intensity (SPL, dB)
- Fundamental frequency (F₀, Hz)
- Background noise level (L_{AF90}, dB)

Calculated parameters (Švec, Popolo, & Titze, 2003)

- Cycle dose (D_c)
 - $D_c = \int_0^{t_m} k_v F_0 dt$ cycles
- Distance dose (D_d)
 - $D_d = 4 \int_0^{t_m} k_v AF_0 dt$ meters

Results

Mean values, standard deviations, range and difference of means for vocal parameters in teachers in classrooms with and without amplification (Wilcoxon signed-rank test)

Vocal	No SFAS		SFAS		MD	Ζ	Р
parameters	M (SD)	Range	M (SD)	Range			
D _t (%)	31.6 (17.2)	1-98	27.5 (15.0)	1-99	-4.1	-4.605	< 0.001
SPL _{@1m} (dB)	62.6 (3.1)	55.8-69.2	62.0 (3.1)	53.2-71.0	-0.6	-7.550	< 0.001
F ₀ (Hz)	214.1 (26.9)	143.7-287.6	210.2 (23.0)	139.5-380.6	-3.9	-11.747	< 0.001
D _c (kcycle)*	4.2 (2.3)	0.1-12.3	3.5 (1.9)	0.1-12.9	-0.7	-7.264	< 0.001
Dd (m)*	12.0 (6.5)	0.3-31.2	9.9 (5.4)	0.2-29.9	-2.1	-8.155	< 0.001

SFAS – sound field amplification system

MD – difference of means

^{*} per minute

Results, cont.

Correlation coefficients between AVQI and voicing time percentage ($D_{t\%}$), vocal intensity ($SPL_{@1m}$), fundamental frequency (F_0), cycle dose ($Dc_{1 min}$), and distance dose ($Dd_{1 min}$) in two acoustical conditions

Vocal parameter	AVQI			
	No SFAS	SFAS		
D _t (%)	092**	NS		
SPL _{@1m} (dB)	.590**	.356**		
F ₀ (Hz)	187**	201**		
D _c (kcycle)	107**	NS		
Dd (m)	NS	.100**		

 $P \leq .001$ (Spearmen's Correlation)

Conclusions

- Voice amplification significantly decreased SPL, F_0 , $D_{t\%}$, D_c , and D_d in teachers
- Voice amplification created conditions that changed the teachers' vocal parameters and reduced vocal demand response to satisfy communication requirements
- The impact of SFAS on vocal demand response could be different in teachers with different acoustical voice quality therefore this aspect should be investigated in the future

Thank you for the attention!

Voice and Speech Research Laboratory, Liepaja University baiba.trinite@liepu.lv